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Abstract

The complement system is an essential part of the innate immune system by acting as a first line of defense which is
stabilized by properdin, the sole known positive regulator of the alternative complement pathway. Dysregulation of
complement can promote a diversity of human inflammatory diseases which are treated by complement inhibitors. Here,
we generated a novel blocking monoclonal antibody (mAb) against properdin and devised a new diagnostic assay for this
important complement regulator. Mouse mAb 1340 specifically detected native properdin from human samples with high
avidity. MAb 1340 inhibited specifically the alternative complement mediated cell lysis within a concentration range of 1–
10 mg/mL. Thus, in vitro anti-properdin mAb 1340 was up to fifteen times more efficient in blocking the complement system
as compared to anti-C5 or anti-Ba antibodies. Computer-assisted modelling suggested a three-dimensional binding epitope
in a properdin-C3(H2O)-clusterin complex to be responsible for the inhibition. Recovery of properdin in a newly established
sandwich ELISA using mAb 1340 was determined at 80–125% for blood sample dilutions above 1:50. Reproducibility assays
showed a variation below 25% at dilutions less than 1:1,000. Systemic properdin concentrations of healthy controls and
patients with age-related macular degeneration or rheumatic diseases were all in the range of 13–30 mg/mL and did not
reveal significant differences. These initial results encourage further investigation into the functional role of properdin in the
development, progression and treatment of diseases related to the alternative complement pathway. Thus, mAb 1340
represents a potent properdin inhibitor suitable for further research to understand the exact mechanisms how properdin
activates the complement C3-convertase and to determine quantitative levels of properdin in biological samples.
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Introduction

The complement system serves as a bridge between the innate

and the adaptive immune system. More than 40 blood proteins

interact in cascades to eliminate blood and tissue infectious agents

by opsonization, anaphylatoxins and cell lysis. However, activated

complement is a double-edged sword, capable of protecting from

pathogens as well as causing self-tissue damage. Complement

dysregulation is caused by mutations in complement genes, the

presence of autoantibodies or large tissue damage [1,2]. There is

abundant evidence for complement activation in several autoim-

mune, eye and kidney diseases [1,3].

Disease-associated variants in several complement genes in

patients with age-related macular degeneration (AMD) or atypical

haemolytic-uraemic syndrome (aHUS) directed the attention of

therapeutic interventions to the alternative complement pathway

[4–6]. Spontaneous or surface-dependent hydrolysis of comple-

ment protein 3 (C3) to C3(H2O) specifically activates this pathway

in human blood. C3(H2O) binds complement factor B and

interacts with complement factor D to form a fluid phase C3-

convertase which cleaves C3 in C3a and C3b. C3b opsonizes

target surfaces and binds factor B, which is cleaved by factor D,

yielding Bb. Properdin stabilizes five to ten-fold both the fluid-

phase (C3(H2O)Bb) and surface-bound (C3bBb) C3-convertase of

the alternative pathway [7]. Complement factor H (CFH)

dissociates the C3-convertase and in combination with factor I

inactivates the C3b protein [7,8]. In a positive feedback loop, C3-

convertase cleaves C3 and an additional C3b molecule comple-

ments C3bBb to form the C5-convertase. C5 cleavage initiates the

terminal complement pathway and mediates inflammation as well

as the formation of a cell membrane attack [9].

Properdin, the only known positive regulator of the complement

system, escalates and initiates the alternative pathway [7,10]. It is

expressed in various cell types, mainly leukocytes, resulting in a

systemic serum concentration of 4–25 mg/mL [11,12]. The

glycoprotein with a molecular weight of about 50 kDa consists
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of seven thrombospondin type I repeats (TSR) [13,14]. Under

physiological conditions, humoral properdin exists as cyclic

dimers, trimers and tetramers in a fixed ratio of 26:54:20

(dimer:trimer:tetramer) [15]. Recently, structural studies of

properdin multimers showed four TSR subunits of two monomers

forming a vertex which interacts with the C3-convertases [16]. In

this complex, properdin TSR 4 and 5 interact with the C3a-chain

while the Ba and Bb subunits of factor B bind to properdin

[16,17]. Which properdin subunit interacts with Ba or Bb remains

unknown [16–19]. Stabilization of the convertases is opposed by

CFH-mediated dissociation of Bb although direct inhibitory

regulation of properdin by CFH is not known.

Mutations in negative regulators of the C3-convertase result in

pathogenic tissue damage [20–24] and several studies in mice

implicate properdin in the pathogenesis of complement-mediated

tissue injury [25]. Miwa et al. described an alternative pathway-

dependent pathology in a renal ischemia-reperfusion mouse model

which was significantly ameliorated by properdin depletion [26]. A

similar effect was reported in a mouse model for abdominal aortic

aneurysm, where aneurysm formation was controlled by autoan-

tibodies and properdin activity [27]. Additionally, properdin-

deficient mice also showed a reduced severity of tissue damage in

two different models of arthritis [28,29]. Antibody-mediated

inhibition of properdin in these animal models prevented or

ameliorated disease development. Disease associated complement

activation in humans showed complement consumption and can

results in decreased properdin concentrations [30]. Consistent

with the animal models, rheumatoid arthritis patients showed a

decreased properdin concentration in synovial fluid [31]. Auto-

antibodies and properdin are also involved in pathologies of

neuromyelitis optica, Schönlein-Henoch syndrome and systemic

lupus erythematosus (SLE) where systemic properdin concentra-

tions are also decreased [32–34]. These studies indicate the

potential of properdin as a therapeutic target in complement-

mediated disorders.

Several complement antibody-therapeutics are currently under

development, but only Eculizumab (anti-C5) is approved to treat

alternative pathway-associated disorders, aHUS and paroxysmal

nocturnal hemoglobinuria (PNH) [35]. Clinical evaluation of

Eculizumab demonstrated an improvement for aHUS patients

and a favorable tolerability profile [36].

Regulators of complement activation can prevent or facilitate

formation of convertases. Supplements with soluble negative

complement regulators are in clinical phase I (complement

receptor 1) or preclinical studies (CFH constructs, protectin)

[35]. For the inhibition of properdin, a monoclonal anti-properdin

antibody was described in 2000 but no further preclinical or

clinical studies have been pursued [37]. The main concern in the

context of complement inhibition is the risk of increased

susceptibility to infection. However, if properdin is the target, this

issue can be circumvented with prophylactic vaccination against

Neisseria meningitides, the only known life-threatening infection in

properdin-deficient patients [38].

In this study, we generated a novel mouse anti-properdin

antibody and characterized its specificity and avidity to human

properdin. We demonstrated that our monoclonal antibody

inhibits complement activation and allows defining properdin

serum levels in patients with complement-mediated diseases. Thus,

mAb 1340 may provide a promising future complement thera-

peutic and analytical tool.

Materials and Methods

Patient samples and ethics statement
Human blood samples were taken after approval of the local

ethics committees (University Regensburg, references 12-101-0241

and 12-101-0074). All donors signed a written consent form.

Patients with age-related macular degeneration (AMD, n = 20)

were recruited at the University Regensburg. Patients with

systemic lupus erythematosus (SLE, n = 6), connective tissue

diseases (CTD, n = 10), polymyalgia rheumatica (PR, n = 31),

rheumatoid arthritis (RA, n = 38), spondyloarthritis (SPA, n = 40)

and systemic sclerosis (SSc, n = 16) were recruited at the Asklepios

Klinikum Bad Abbach. All samples of patients with rheumatic

diseases were obtained prior to initiation of corticosteroid or

immunosuppressive therapy. Healthy blood donors (controls,

n = 26) were randomly chosen students and staff members of the

University Regensburg.

All mice were handled according to the good animal practice in

science. This study was carried out in strict accordance with the

recommendations in the Guidelines for the Care and Use of

Laboratory Animals of the Federation of European Laboratory

Animal Science Associations. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the regional

agency for animal health Regierung der Oberpfalz, Veterinärwe-

sen (permit number: TV 54-2532.4-04/12). All immunizations

and bleedings were performed under inhalational anesthesia

(Isoflurane), and all efforts were made to minimize suffering.

Materials
Monoclonal anti-properdin antibodies (A233, A235), anti-C5

antibody (A217) and Anti-Ba (A225) were obtained from Quidel,

San Diego, USA. MAb anti-botulinum toxin (BoNT) was

generated previously [39]. Cell culture reagents were purchased

from Life technologies, Darmstadt, Germany. All chemicals

without separate reference were commercially available from

Sigma-Aldrich, Munich, Germany.

Generation of monoclonal antibodies
Mouse monoclonal antibodies against human properdin were

generated as previously described [39]. Briefly, six weeks-old

female Balb/c mice (Charles River Laboratories, Sulzfeld,

Germany) were immunized five times with 25 mg human, purified

properdin (Quidel, San Diego, USA). Antigens were applied

subcutaneously in complete Freund’s adjuvants for priming

immunization and incomplete Freund’s adjuvants for follow-up

immunizations. Spleen cells were isolated and fused with myeloma

cell line P3-X63-AG8.653 (American Type Culture Collection,

Manassas, USA) using a ratio of 2:1 with polyethylene glycol 1500

(Roche Diagnostics, Mannheim, Germany) according to standard

procedures [40]. Cells were cultivated on BALB/c thymocytes as

feeder cells in RPMI 1640 media, containing 20% fetal calf serum,

50 mM 2-mercaptoethanol, 50 U/mL recombinant murine inter-

leukin 6, 1% glutamine, 5.8 mM azaserine and 100 mM hypoxan-

thine. On day 10–20 post fusion, hybridoma supernatant was

tested for properdin-binding in an indirect enzyme-linked

immunoassay (ELISA). Positive hybridomas were isolated and

subcloned by limiting dilution. Stability and clonality of hybrid-

omas were tested by intracellular immunoglobulin staining and

flow cytometry analysis [40]. Monoclonal antibodies were purified

using HiTrap protein G HP affinity column (GE Healthcare Life

Science, Piscatawa, USA). Purity was checked by SDS-PAGE.

The concentration of purified antibodies was measured using a

NanoDrop 1,000 spectrometer. Isotype was determined using a
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mouse isotyping kit (AbD serotec, Kidlington, UK). Antibody

biotinylation was performed as described before [39].

Indirect ELISA for antibody binding
MaxiSorp plates (Nalgene Nunc, Penfield, USA) were coated

with 0.5–1 mg/mL antigen in PBS (overnight, 4uC). All incubation

steps were completed with three subsequent washing steps with

wash buffer (PBS, 0.1% Tween 20). After blocking with blocking

buffer (PBS, 0.1% Tween 20, 2% skimmed milk) antibodies

serially diluted in blocking buffer (1,000–0.1 ng/mL) were added

(1 h). Detection was performed with a peroxidase-conjugated anti-

mouse immunoglobulin G (IgG) antibody (Jackson ImmunoR-

esearch Laboratories, West Groove, USA) and 3,39,5,59-tetra-

methylbenzidine (TMB, Seramun, Wolzig, Germany). Signal was

determined at 450 nm.

cDNA cloning of mouse properdin
Total RNA was extracted from mouse liver (RNeasy MiniKit,

QIAGEN, Hamburg, Germany). Full-length murine properdin

(NM_008823.3, nt 71–1462) was amplified with oligonucleotide

primers 59-GAATTCATGCCTGCTGAAATGCAAGCC-3‘ and

5‘-CTCGAGGGGTTTCTTCTCTTCTGGGTCT-3‘. The

PCR product was cloned into expression vector pEXPR-IBA103

(IBA, Goettingen, Germany). Human embryonic kidney cells 293-

EBNA (HEK, Life Technologies, Carlsbad, CA, USA) were

transfected with TransIT-LT1 Transfection Reagent (Mirus,

Madison, WI, USA). The supernatant was purified using Gravity

flow Strep-Tactin Sepharose Column (IBA, Goettingen, Ger-

many). Expression and purity was confirmed by Western blot

(antibody: StrepMAB-Classic conjugated to horseradish peroxi-

dase, IBA, Goettingen, Germany) and SDS-PAGE.

Immunoprecipitaton of properdin
Tosylactivated dynabeads (Life Technologies, Carlsbad, USA,

5 mg) were conjugated to 100 mg mAb 1340 according to the

manufacture’s protocol. Pooled human Serum (NHS, 1.5 mL) was

incubated with mAb 1340-dynabeads (50 mL, 1 h). After washing

with wash buffer, proteins were eluted using non-reducing

Laemmli sample buffer and denaturation at 95uC (10 min) [41].

Protein gel analysis and Western blot analysis
After immunoprecipitation, eluted samples and purified proteins

were denatured (5–10 min, 95uC) and analyzed on a non-reducing

6–12% SDS-PAGE with subsequent Coomassie staining (detection

limit 1 mg) as described before [41]. Proteins were separated and

transferred on a polyvinylidene difluoride membrane applying the

semi-dry blotting method [42]. After blocking with blocking buffer

(PBS, 0.1% Tween 20, 2% skimmed milk), the membrane was

incubated with 1 mg/mL mAb 1340 (5 mL in blocking buffer,

1 h). The washed membrane was treated with a peroxidase

conjugated anti-mouse IgG antibody (in blocking buffer, 30 min).

After six washing steps with PBS, antibody binding was detected

using ECL solution (100 mM Tris/HCl pH 8.8, 1.3 mM luminol,

0.6 mM p-coumaric acid, 4.6 mM hydrogenperoxide) (detection

limit 10 ng).

LC-MS/MS analysis
Visible bands from Coomassie-stained gels were excised,

washed and tryptically digested as published previously [43].

Resulting peptides were used for nano-LC-MS/MS-analysis on a

TripleTOF 5600+ QTOF mass spectrometer equipped with an

Ultimate 3000 nano-HPLC with precolumn concentration (pre-

column: 100 mm I.D., 2 cm, Acclaim PepMap100, 5 mm (Dionex,

Idstein, Germany); HPLC column: 75 mm I.D., Acclaim Pep-

Map100, 3 mm; 300 nL/min (Dionex, Idstein, Germany)). Sam-

ples were separated using a 30 min binary gradient from 4–30% B

(solvent A: 0.1% formic acid; solvent B: 0.1% formic acid in

acetonitrile). The mass spectrometer repeatedly acquired a survey

scan and MS/MS spectra of the four most intensive ions for 0.2 s

each. Database searches were accomplished using the Mascot

algorithm (version 2.3) on the Uniprot-database (version 05/2013).

Lysis assays
Complement activity of the alternative pathway was measured

in a hemolysis assay with sheep erythrocytes [44,45]. We intended

to avoid false-negative results for antibody testing and used

erythrocytes which were more resistant to lysis by human serum

[46]. Antibodies were serially diluted in MgEGTA buffer (20 mM

HEPES, 144 mM NaCl, 10 mM EGTA, 7 mM MgCl2, pH 7.4)

and preincubated with 20% NHS in MgEGTA buffer (15 min,

37uC). Sheep red blood cells (16108) were treated with 20% NHS-

antibody mixtures in MgEGTA buffer for 30 min (37uC). Lysis

was determined at 414 nm.

Alternatively, blocking activity of mAb was tested in an

Escherichia coli (E. coli) lysis assay. MAb in different concentrations

were preincubated either with 40% NHS in MgEGTA buffer

(alternative pathway) or 20% NHS in PBS (classical pathway)

(30 min, 37uC). E. coli Stbl3 (Life Technologies, Carlsbad, CA,

USA) cultures with an optical density of 1 at 600 nm were added.

E. coli cells were incubated at 37uC and growth was determined

after 3 h at 600 nm.

Determination of antibody sequence
The cDNA of hybridoma cell line 1340 was synthetized using

the RNeasy Plus Mini Kit (Qiagen, Hamburg, Germany) and the

Cloned AMV First-Strand cDNA Synthesis Kit (Life technologies,

Darmstadt, Germany). In order to amplify the IgG variable region

of heavy and light chain, the Mouse IgG Library Primer set

(Progen, Heidelberg, Germany) was used according to the

manufacturer’s protocol. The purified PCR products were ligated

into a pGEM-T plasmid (Promega, Mannheim, Germany). After

heat shock-induced plasmid transfection into competent E. coli

DH5a (Life Technologies, Carlsbad, CA, USA) the plasmid was

amplified in an overnight culture and isolated using the

NucleoSpin Plasmid kit (Macherey-Nagel, Düren, Germany).

For Sanger sequencing a reaction mix with M13 primer (Promega,

Mannheim, Germany) and the BigDye Terminator v3.1 cycle

sequencing kit (Life Technologies, Carlsbad, USA) were used.

Depletion of properdin from human blood sample
MAb 1340 was coupled to a HiTrap NHS-activated affinity

column (GE Healthcare Life Science, Piscatawa, USA) according

to the manufacturer’s instructions. Properdin was depleted from

human serum and plasma by recirculation 3 ml over the mAb

1340 column for 2 h. Through flow was tested in the reported

sandwich ELISA and Western blot for properdin concentration.

There was no properdin detectable.

Sandwich ELISA for properdin detection
For development and optimization of the properdin specific

sandwich ELISA we tested different antibodies (mAb 1340, mAb

149 (inhouse anti-properdin mAb), mAb A233, mAb A235, pAb

goat anti-properdin (Complement technologies, Tyler, USA)),

buffer (PBS, PBS/T, 1% BSA/PBS/T, Casein buffer, 2% skim

milk in PBS/T, MgEGTA buffer) and detection systems

(streptavidin-peroxidase and poly-horseradish peroxidase). The
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studies with human blood were done with the most reliable,

sensitive and practical assay of the pre-evaluation studies.

MaxiSorp plates were coated with 2 mg/mL mAb A235 in PBS

overnight at 4uC. After blocking with blocking buffer (1 h), plates

were washed and incubated with different samples (1 h): serial

dilutions of pooled human plasma (NHP) or NHS in PBS (1:10–

1:156,250), properdin (100 ng/mL) spiked into properdin-deplet-

ed NHS or NHP, different species sera (1:1,250), mouse properdin

(500 ng/mL), bovine serum albumin (500 ng/mL) and unknown

serum samples (1:700) in PBS. Subsequently, washing and

incubation with biotinylated mAb 1340 was performed (1 h).

SA-POD (Jackson ImmunoResearch Laboratories, West Groove,

USA) and TMB were used for signal development. Optical density

was measured at 450 nm. Six different NHP or NHS standard

curves on one day or on different days were performed for intra-

assay and inter-assay variation, respectively. Coefficient of

variation (CV) was calculated by means and standard deviations

of absorbance values at 450 nm.

Software
The structure of the variable region of mAb 1340 was modeled

on the VBASE2 server [47], the Rosetta online server [48] and

with the proABC method [49]. Complementarity-determining

regions (CDR) prediction was performed with abYsis, VBASE2,

Rosetta and IMGT methods [50]. Visualizations of structures

were done with UCSF Chimera [51]. Data analyses were

performed with GraphPad Prism (GraphPad Software, San Diego,

USA).

Results

Newly generated monoclonal anti-properdin antibody
binds human properdin with high avidity

Mice were immunized with purified human properdin for the

generation of specific and high-affinity antibodies. The selected

mouse showed a specific serum titer of 1:220,000 against the target

protein. Among 1,900 screened hybridoma clones, a stable cell line

#1340 secreted anti-properdin antibodies. The binding strengths

of different monoclonal antibodies were tested in an ELISA with

immobilized human properdin (Figure 1). MAb 1340, together

with two commercial anti-properdin mAb, i.e. mAb A233 and

A235 interacted concentration-dependent with the designated

antigen. We detected comparable avidities for mAb 1340, A233

and A235 with half maximal effective concentrations (EC50) of

0.16 nM, 0.07 nM and 0.1 nM, respectively. The described

antibodies showed similar binding strengths as an established

anti-complement mAb Eculizumab (anti-C5 mAb, 0.12 nM) and

even a higher mAb-antigen interaction as the routinely used

therapeutic mAb Bevacizumab (anti-VEGF, 0.8 nM) [52,53]. In

consideration of a broad affinity range from 1 pM to 1 nM of

therapeutic antibodies the newly described mAb 1340 displays a

high avidity towards properdin [54]. The binding strength is

important for later in vivo potency as well as future doses and

dosing intervals.

MAb 1340 interacts with native human properdin
multimers

MAbs are also characterized by a unique specificity, which was

tested by ELISA for anti-properdin mAbs. MAb 1340 and

commercial A235 specifically recognized human purified proper-

din or properdin in human serum (Figure 2A). Therefore, mAb

A235 was used as a control antibody in all further experiments.

Heat denatured or reduced properdin was not detected using mAb

1340 (data not shown). The novel mAb did not react with

unspecific proteins like mouse properdin, supernatant derived

from human embryonic kidney cells or fetal calf serum

(Figure 2A). In contrast, a widely used commercial mAb A233

detected all immobilized antigens and did not discriminate

between human, mouse and fetal calf properdin as well as cell

supernatant without properdin above 1 mg/mL but not at lower

concentrations. A233 cross-reactivity could be due to an enhanced

non-specific attraction between proteins and not necessarily to

antigen-antibody binding.

These results indicated a high specificity of mAb 1340 for

properdin and initiated a deeper characterization of the mAb 1340

interaction partners.

Properdin interacts in a multimeric structure with several other

human serum components. We used mAb 1340 to immunopre-

cipitate properdin multimers and associated proteins from serum

samples. The antibody detected different aggregated properdin

oligomers in a Western blot analysis (Figure 2B). The ratio of the

densitometric intensity of properdin trimer (165 kDa): dimer

(110 kDa): monomer (55 kDa) was 7:1:18. This ratio differed from

the previously described properdin oligomer ratio in blood [15]

and maybe due to a non-natural heat treatment-dependent

oligomer-aggregation during SDS-PAGE [55].

Native properdin multimers bind the C3-convertases of

complement [7]. Using mAb 1340 as a matrix we identified

components of a mAb 1340-immunoprecipitated protein mixture

at different sizes by mass spectrometry (Figure 3A). Properdin was

identified at a 55 kDa band. An exemplary mass spectrum for

amino acids 409–422 of properdin showed characteristic fragment

ions (Figure 3B). Additionally, C3(H2O) (.170 kDa) and C3

fragments (170 kDa, 68 kDa) were identified. Furthermore,

Figure 1. Anti-properdin antibodies show high avidity towards
human properdin. The binding strengths of newly generated mAb
1340 as well as commercially available mAb A233 and mAb A235 were
tested in an indirect ELISA. MAbs were serially diluted (1,000–0.1 ng/
mL) and properdin binding was detected with a peroxidase conjugated
anti-mouse IgG antibody. MAb 1340 (EC50 25 ng/mL), mAb A233 (EC50
11 ng/mL) and mAb A235 (EC50 15 ng/mL) showed comparable
binding strengths towards immobilized human properdin. Shown are
means (n = 96s.e.m.) out of three independent experiments each with
three replicates. After background subtraction, data were normalized to
1,000 ng/mL mAb 1340 reactivity against properdin (set to 100%).
doi:10.1371/journal.pone.0096371.g001
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clusterin (53 kDa) and human immunoglobulins (150 kDa) were

discovered as binding partners of properdin immobilized on mAb

1340 (Figure 3A). Factor Bb, the interaction partner of C3b in the

C3-convertase, was not detected. With the use of mAb 1340, we

identified novel interaction partners like IgG and clusterin that

seemed to include in a multimeric properdin protein complex in

soluble human serum.

The identified properdin interaction partners did not bind the

properdin epitope of mAb 1340, which was a discontinuous amino

acid sequence in the tertiary structure of properdin (Figure S1).

Three docking algorithms predicted different TSR subunits of a

properdin monomer for interaction with mAb 1340 in silico.

Properdin monomers form multimeric structures with connecting

loops, consisting of four TSRs [16]. The putative epitope of mAb

1340 could be located in this crucial interaction point of properdin

monomers, which resulted in different docking predictions to the

monomer (Figure S1D). Binding of mAb 1340 to single TSR

subunits showed no result in Western blot analysis or competitive

ELISA (Figure S2). The only binding partner for mAb 1340 was

a structural epitope of full length human properdin.

MAb 1340 inhibits properdin function
Alorco et al. described the properdin monomer connecting

vertexes as stabilization partners for the C3-convertase [16].

Binding of mAb 1340 to properdin showed an inhibition of the

C3-convertase in functional complement assays (Figure 4).

Human serum either preincubated with mAb 1340 or mAb

A235 resulted from 1–10 mg/mL mAb in a reduced lysis of sheep

red blood cells or E. coli cells, respectively (Figure 4A, B). Activity

of mAb 1340 and mAb A235 resulted in a blocking peak at 1.3–

2.7 mg/mL. At higher mAb concentrations cell lysis increased

again likely due to complement reactivation via immune complex

formation [56]. MAb 1340 and mAb A233 inhibited the binding

of properdin to immobilized C3b and as a consequence thereof

factor B binding was also diminished. MAb 235 did not interfere

with properdin deposition on C3b coated plates but inhibited

factor B binding to C3b (Figure S3).

The properdin targeting mAb 1340 and mAb A235 suppressed

the alternative complement system more effectively, than anti-C5

or anti-Ba antibodies (Figure 4A, B). Five to fifteen times more

antibody of C5 or Ba targeting mAbs were used to observe a

comparable maximum inhibition of the lytic effect of human

serum. An unspecific isotype control against botulinum toxin did

not inactivate the complement pathways.

The function of properdin in vivo offers an opportunity for a

selective manipulation of the alternative complement pathway. We

tested the inhibition of classical and alternative pathway mediated

by different mAb (Figure 4C). The alternative pathway was

influenced by anti-properdin mAb and anti-C5 mAb and the

classical complement system was only blocked by anti-C5 mAb.

These results demonstrated that mAb 1340 inhibited the activity of

properdin exclusively in the alternative complement pathway.

Detailed structure of mAb 1340 as a basis for
humanization

MAb 1340 is a highly affine, specific and blocking antibody

against properdin, with a mouse IgG 1 isotype and a k-light chain.

The immunoglobulin consisted of a highly glycosylated 35 kDa

light chain and a 55 kDa heavy chain in SDS-PAGE (data not

shown). Additionally, the amino acid sequence of the variable

domain of light and heavy chain showed a very low humanness

with a Z-score of 21.6 and 21.8, respectively. These structural

properties suggested a prospective humanization or chimerization

for an application in vivo. Therefore, the sequences of the

hypervariable loops of the antigen binding region were analyzed.

Seven different algorithms were used to predict the CDR

(Table 1). All programs identified regions within the variable

domains with overlapping amino acids (bold, underlined in

Table 1). CDR-H2, CDR-H3 and CDR-L3 showed the highest

consistency. Based on the amino acid sequence of the variable

Figure 2. Monoclonal antibodies specifically detect properdin in human serum. (A) Purified human properdin, human serum, recombinant
mouse properdin, human embryonic kidney (HEK) cell supernatant and fetal calf serum were immobilized on an ELISA plate. In house mAb 1340
(1 mg/mL) and commercial mAb A235 (1 mg/mL) detected only purified human properdin or human serum, respectively. MAb A233 (1 mg/mL)
detected all antigens tested. Shown are the respective means (6 s.e.m.) for two independent experiments. After background subtraction data were
normalized to mAb 1340 reactivity against properdin (set to 100%). (B) Human properdin was isolated from human serum by immunoprecipitation
(IP) using mAb 1340 (left lane). The precipitated proteins and purified control properdin (right lane) were separated by non-reducing, denatured SDS-
PAGE. Western blot detection was performed with mAb 1340 and a peroxidase conjugated anti-mouse IgG antibody. The generated mAb
precipitated and detected properdin monomer (,55 kDa), dimer (,110 kDa) and trimer (,165 kDa), respectively.
doi:10.1371/journal.pone.0096371.g002
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domains a three-dimensional model of mAb 1340 Fab was

generated (Figure 5A). The framework was built from b-sheets

and the CDRs formed a-helices. Predicted CDRs (bold, under-

lined in Table 1) formed an antigen binding cleft of 11.66–

24.64 Å. The antibody binding groove was surrounded by amino

acids residuals, which were predicted as contact amino acids with

Figure 3. MAb 1340 precipitates properdin, complement factor 3, clusterin and immunoglobulins from human serum. (A) Proteins
from human serum binding to mAb 1340 were isolated by coimmunoprecipitation. After size separation in an SDS-PAGE, protein fractions were
identified using Coomassie staining and combined LC-MS/MS analysis. MAb 1340 precipitates complement factor C3(H2O) (.170 kDa) as well as C3-
fragments (,170 kDa), clusterin (53 kDa), immunoglobulins (150 kDa, murine IgG (mIgG), human IgG (hIgG)) and properdin (55 kDa). C3 fragments
detected at different molecular sizes, included: C3 b chain, C3c alpha chain fragments 1 and 2, C3dg at .170 kDa; C3 b chain, C3c alpha chain
fragments 1, C3dg at ,170 kDa and C3 b chain at 68 kDa. The confidence index for each identified protein is given by the molecular weight search
(MOWSE) score. (B) Exemplary MS/MS-spectrum matching the properdin peptide YPPTVSMVEGQGEK (amino acids 409–422) is shown. Detected C-
terminal ions (y-ions) are annotated within the peptide sequence.
doi:10.1371/journal.pone.0096371.g003

Figure 4. MAb 1340 inhibits function of the alternative complement system. (A) Effect of mAb 1340 on the alternative complement system
was tested in a hemolysis assay. Human normal serum was preincubated with different antibodies (0.03–50 mg/mL). Lysis of sheep erythrocytes was
measured at 414 nm after addition of the serum-mAb mixtures. Lysis of the erythrocytes was reduced after adding increasing concentrations of mAb
anti-properdin (mAb 1340 (blue), mAb A235 (green)). Other complement system specific antibodies resulted in an inhibition of the complement
system at higher concentrations (mAb anti-Ba (grey), mAb anti-C5 (red)). We observed lysis of sheep erythrocytes after incubation with a non-specific
mAb anti-botulinum neurotoxin (BoNT, orange, isotype control). (B) Inhibition of NHS-associated E. coli lysis by mAb was tested. E. coli were
cultivated in media with EGTA containing NHS and mAb in different concentrations (0.1–33 mg/mL). Percentages of viable E. coli cells were calculated
in comparison to an untreated control. The E. coli lysis assay showed comparable inhibitory results with the hemolysis assay. MAb A235 showed a
decrease in viable E. coli at concentrations above 1 mg/mL. (C) Blocking activity of different anti-complement mAb (6.6 mg/mL, anti-BoNT as isotype
control) for EGTA containing NHS (AP alternative pathway, black columns) and NHS (CP classical pathway, white columns) mediated lysis of E. coli was
analyzed. Anti-properdin mAb (mAb 1340, mAb A235) inhibited the alternative pathway but not the classical pathway. MAb anti-C5 blocked the lysis
of E. coli mediated by alternative and classical pathway. For all figures means out of two independent experiments (n = 46s.e.m., except for 4B
concentrations 0.08, 0.52, 2.6, 12.1 mg/mL n = 26s.e.m.) are shown.
doi:10.1371/journal.pone.0096371.g004
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the antigen (Figure 5B). The defined analyses of mAb 1340

structure provided valuable information for further antibody

modulations.

MAb 1340 detects specifically and reproducibly
properdin from human blood in a sandwich ELISA

To determine the properdin concentration in different patient

cohorts a sandwich-ELISA based on mAb 1340 was developed

and validated for human blood samples (Figure 6). Properdin

detection from human plasma was more sensitive than from

human serum with EC50 values of 30 ng/mL (1:800) and 50 ng/

mL (1:400), respectively. The linear range of the plasma standard

curve covered dilutions from 1:200 to 1:2,000 and the serum

standard curve showed a linear range from 1:100 to 1:1,000

(Figure 6A). Recovery rate of 100 ng/mL properdin spiked into

properdin depleted human plasma or serum differed over the

tested sample dilution range. Acceptable recovery rates between

80–125% were obtained for all tested plasma concentrations

(Figure 6B). Plasma did not alter the detection of spiked

properdin. In contrast, serum had to be diluted at least 1:50 to

avoid a masking matrix effect (Figure 6B) [57]. We tested the

specificity of the ELISA for different animal sera and only human

properdin was detected. There were no false positive results for

mouse, rat or bovine properdin (Figure 6C). Additionally, the

assay showed a high reproducibility for plasma dilutions less than

1:10,000 with a CV below 25% (Figure 6D). For serum samples a

difference in within-plate and plate-to-plate consistency was

determined. The intra-assay reproducibility (CV,25% at

1:10,000) for serum was better than the inter-assay reproducibility

(CV,25% at 1:1,000) (Figure 6D). The analyses of serum and

plasma samples within the linear range of the assay were

reproducible. We chose a dilution of 1:700 for all unknown

plasma and serum samples. This dilution is in the linear range of

the assay, gives acceptable recovery and sufficient reproducibility.

Properdin concentrations in patients with age-related
macular degeneration or rheumatic diseases and control
sera are similar

Complement activation is involved in AMD and different

rheumatoid diseases [58]. The properdin amount of AMD patients

(n = 20, mean 98% of positive control) corresponded to the

concentration in the healthy control group (n = 26, mean 102% of

the positive control) (Figure 7). There was also no significant

difference in the ELISA signal for properdin detection in the group

of rheumatoid diseases versus the control cohort (Figure 7).

Patients with connective tissue diseases (CTD, n = 10), polymyal-

gia rheumatica (PR, n = 31), rheumatoid arthritis (RA, n = 38),

spondyloarthritis (SPA, n = 40) and systemic sclerosis (SSc, n = 16)

showed no discriminable properdin detection compared to the

positive control (means were 94%, 99%, 95%, 103% and 100%,

respectively). Patients with systemic lupus erythematosus (SLE,

n = 6) showed a lower but not significant signal with 82% of the

control (two-tailed, paired t-test, P = 0.2496). These results

indicate a consistent systemic properdin serum concentration for

the analyzed diseases.

Discussion

MAb 1340 as a future complement therapeutic?
Complement protein deficiency or partial dysfunction can lead

to a disturbed homeostasis of the alternative pathway and as a

consequence result in pathological inflammatory processes.

Diseases such as AMD, rheumatic diseases and aHUS have been

associated with uncontrolled alternative complement activation

[58]. Different therapeutic interventions are under development to

specifically target the alternative pathway although this may be a

challenging task at hand [33]. There is a difficult balancing act to

inhibit the alternative complement pathway and at the same time

maintain the physiological function of this important player of the

innate immune system.

Figure 5. Structure of mAb 1340. (A) A model of mAb 1340 secondary structure shows the heavy (blue) and light (red) variable chain. The binding
cleft is determined by six CDR loops (marked are overlapping amino acids from Table 1) either in the heavy chain H1 (orchid), H2 (salmon), H3
(magenta) or in the light chain L1 (dark green), L2 (chartreuse), L3 (springgreen). The distance between the chains varies between 11.66–24.64 Å.
Modeling was performed with Rosetta. (B) Spherical display of mAb 1340 light (light grey) and heavy (dark grey) variable chain. The predicted amino
acids for antigen contact are highlighted. The coloring of the residues is according to their contact probability value (the higher the probability the
deeper the color). Modeling was performed with proABC.
doi:10.1371/journal.pone.0096371.g005
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Therapeutic compounds like Eculizumab (anti-C5 mAb) or

Compstatin (anti-C3 peptide) target the central serine-proteases of

all three complement pathways and are tested in clinical studies for

aHUS as well as AMD, respectively [59,60]. Developments like

CFH supplements or anti-properdin antibodies offer the oppor-

tunity to influence regulators of the alternative complement

system, while the proteases are only indirectly blocked [61,62].

Beneficial effects of properdin inhibition in mouse models for

complement-mediated tissue injuries like arthritis or abdominal

aortic aneurysm have been shown [26–29,63]. The novel mAb

1340 described here is a mouse antibody with high affinity and

inhibiting activity against human native properdin. The inhibitory

efficiency of mAb 1340 is comparable to previously described anti-

human properdin immunoglobulins [37,64]. Complement-target-

ing antibodies with a specificity for C5 and factor B required

higher immunoglobulin concentrations to block the complement

pathway [65,66]. Given that the concentration of properdin in

human serum is 4–25 mg/mL, these data suggested that a dose of

3–13 mg/mL of mAb 1340 would be sufficient to block alternative

complement activation in a systemic application [11]. This is in

the range of established bioavailability of approved therapeutics

(Adalimumab 3.1–6.3 mg/mL, Alemtuzumab 2.5–6.1 mg/mL)

[67,68].

Bansal-Gupta et al. described a properdin targeting mAb, which

also showed blocking activity [37]. This antibody inhibited the

binding of C3 to properdin and interfered with C3-convertases of

all three complement pathways. Importantly, the reported mAb

1340 inhibits exclusively the alternative pathway by influencing

the interaction of C3 with properdin. MAb 1340 precipitated

properdin in association with high amounts of C3(H2O), human

IgG1 and clusterin from human serum. These results suggest that

properdin circulates in a protein complex in human blood and is

acting in concert with C3(H2O) or C3b as an initiator of

complement activation [44,69]. Previous studies have demonstrat-

ed that properdin binds Ba, the N-terminal part of factor B and

the von Willebrand factor type-A domain of the c-terminal

cleavage product Bb [16,17]. We have not observed factor B

fragments in coimmunoprecipitation and combined mass spec-

trometry analysis. The exact epitope of mAb 1340 is so far

unknown. We hypothesize that mAb 1340 binds to the vertexes of

properdin oligomers and inhibits binding of C3b and Factor B.

The activation of the C3-convertase can further be influenced

by unknown protective mechanisms which inhibit properdin-

C3(H2O)/C3b binding to cell surfaces [10]. An inhibitory effect

could be provided by clusterin, which was also identified in our

study from serum in combination with mAb 1340-properdin-

C3(H2O)/C3b. Clusterin suppresses cytolytic activity of terminal

components of the complement pathway C5b–7 [70]. While under

oxidative stress or accumulation of non-native deposits, clusterin

binds to stress epitopes and prevents proteins from aggregation

[71,72]. After clusterin dissociates from the C3b-properdin or

C5b–7, the complexes can bind to surfaces.

Previously established properdin blocking mAbs tested in our

study were commercially available mouse antibodies, but nothing

is known about the amino acid sequences or the structure of the

antigen-binding sites. However, this knowledge is crucial for future

application in humans. Therapeutic antibodies in clinical studies

are mainly humanized or chimeric antibodies [73]. MAb 1340 is

an antibody with a low humanness score, that could elicit a human

anti-mouse antibody response, fix complement at the Fc-region

and therefore result in a systemic inflammatory response [74].

Cloning of mAb 1340 CDRs into a human immunoglobulin

framework is required and would result in reduced immunoge-

nicity. The described three-dimensional model and detailed CDR

analysis of mAb 1340 helps to preserve the antibody specificity of

mAb 1340 for human oligomeric properdin after CDR-grafting,

back mutations and affinity maturation, required for future

therapeutic applications [75]. MAb 1340 allows for a pathway

specific inhibition and has a high potential for amelioration of

inflammation in vivo.

Table 1. Single letter amino acid sequence of complementarity-determining regions (CDR) of mAb 1340.

Algorithm/CDR H1 H2 H3

Kabat SGYWN IGYSGSTFYNPSLKR GDDLFPY

Chothia GDSITSG GYSGS GDDLFPY

IMGT GDSITSGYWN GYSGSTF TRGDDLFPY

AbM GDSITSGYWN FIGYSGSTF GDDLFPY

Contact SGYWN YMGFIGYSGSTF TRGDDLFP

V-BASE GDSITSGY IGYSGST TRGDDLFPY

Rosetta GDSITSGYWN FIGYSGSTFYNPSLKR GDDLFPY

Algorithm/CDR L1 L2 L3

Kabat RASQNISDYLQ YASQSIS QNGHSFPYT

Chothia RASQNISDYLQ YASQSIS QNGHSFPYT

IMGT QNISDY YAS QNGHSFPYT

AbM RASQNISDYLQ YASQSIS QNGHSFPYT

Contact SDYLQWY LLIKYASQSI QNGHSFPY

V-BASE QNISDY YAS QNGHSFPYT

Rosetta RASQNISDYLQ YASQSIS QNGHSFPYT

H variable domain of heavy chain, L variable domain of light chain; Kabat, Cothia, IMGT, AbM, Contact, VBASE2 and Rosetta are different CDR prediction algorithms; bold
and underlined marked amino acids are similar in all sequence.
doi:10.1371/journal.pone.0096371.t001
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Determination of stable systemic properdin
concentrations

The complement system and complement diagnostics were

described more than a century ago. However, complement

analysis in the clinic is limited to C3, C4, C1-inhibitor and overall

complement activity in hemolytic assays [76]. Detection of

properdin deficiency is a challenge as alternative pathway

hemolytic activity is low but often within the normal range [77].

The techniques improved in last years, but still lack standardiza-

tion, feasibility for multiparameter and bulk analyses [76,78].

Properdin diagnostics are done by radial immunodiffusion,

complement fixation assay or ELISA [32,34,57,79]. A described

sandwich ELISA used polyclonal antibodies and detected proper-

din from serum samples [57]. This ELISA showed similar recovery

rates and day-to-day variance as the reported ELISA with mAb

1340. Hoffmann et al. described a high dose hook effect in the

ELISA [57]. Our ELISA showed a dose-dependent slope of the

standard curve for serum and plasma without any inhibited

properdin detection at higher blood concentrations. The novel

properdin sandwich ELISA-based detection technique offers an

opportunity for a precise, reproducible and routine measurement

of properdin concentration in serum and plasma samples.

To our knowledge there is no standardized screening in

complement diagnostics for properdin deficiency or altered blood

titers in diseases so far. Therefore, effects of properdin deficiency

could easily be underdiagnosed. Properdin deficiencies are

orphan diseases, which are associated with increased susceptibil-

ity to meningococcal disease [80]. There is also evidence that

systemic and local properdin concentrations are modified in

certain immune-mediated disorders. Systemically decreased

properdin concentrations were reported for autoantibody-associ-

ated diseases like neuromyelitis optica, Schönlein-Henoch syn-

drome and SLE [32–34]. Although not significant with the

present sample size of patients, we reproduced a reduction in

systemic properdin amounts in SLE patients’s serum. For other

rheumatic diseases and AMD a correlation with complement

activation was described [81,82]. However, we could not find any

systemic changes in the properdin concentrations in patients with

AMD, connective tissue diseases, polymyalgia rheumatica and

spondyloarthritis. Concordant with existing studies, we also did

Figure 6. A sandwich ELISA detected human properdin from blood samples highly sensitively, specifically and reproducibly. (A)
Serial dilutions of human normal plasma and serum pools (1:10–1:156,250) were used as a reference curve for properdin detection from human
samples in a sandwich ELISA. Detection of unknown samples was reliable in a plasma and serum dilution range from 1:100 to 1:1,000. The EC50 of the
plasma curve was at 1:800 and for serum at 1:400, respectively. The mean value of three independent measurements with duplicates is shown. The
reference curves were representable for all performed experiments. (B) Recovery rates of 100 ng/mL properdin from properdin-depleted NHP and
NHS are shown. Plasma matrix did not interfere with properdin recovery. Serum dilution 1:50 and higher gives a recovery rate between 75–125%. (C)
The described sandwich ELISA specifically detected human properdin only either purified or from blood samples. Properdin from mouse, rat or calf
serum showed no signal in an ELISA with immobilized antigens. Other negative controls such as human blood depleted from properdin, human
normal urine or bovine serum albumin were not detected. Two independent experiments with duplicates were performed. (D) Intra-assay and inter-
assay coefficient of variation for different plasma and serum concentrations in the sandwich ELISA displayed high reproducibility. Serial dilutions of a
human normal plasma and serum pool (1:10–1:156,250) were determined. The sandwich ELISA shows CV values below 25% for plasma dilutions from
1:10 to 1:10,000 and for serum dilutions 1:10 to 1:1,000, respectively.
doi:10.1371/journal.pone.0096371.g006
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not observe any significant deviation of serum titers for

autoantibody-associated diseases like rheumatoid arthritis or

systemic sclerosis [31,83]. Prompted by previous reports about

properdin reduction in synovial fluid in rheumatoid arthritis and

local properdin depletion in AMD affected eyes, we suggest a

local but not systemic change of properdin concentrations for

AMD and rheumatoid arthritis [31,84]. Animal experiments

showed local properdin-dependent cell-lysis can be caused by

systemically circulating properdin [28]. Thus, therapeutically

targeting systemic properdin and therefore ameliorating the

alternative complement system with mAb 1340 could be effective

and feasible in locally complement-mediated diseases like arthritis

or abdominal aortic aneurysm [25].

Conclusions

The recent success of complement inhibitors and reports about

properdin-associated diseases, illustrate a promising potential for

anti-properdin treatment in complement-mediated tissue injuries.

We anticipate that the development of the novel distinct properdin

inhibiting mAb 1340 and our specific properdin detection system

will be instrumental to further characterization of properdin and

its impact on human pathologies.

Supporting Information

Figure S1 MAb 1340 interacts with different thrombos-
pondin like repeats of properdin. Properdin is a 55 kDa

protein and consists of seven thrombospondin like repeats (TSR 0

yellow, TSR 1 purple, TSR 2 red, TSR 3 grey, TSR 4 green, TSR

5 blue, TSR 6 cyan). Each TSR is built of 49–84 amino acids with

connecting amino acids (yellow) between different TSRs. The

short C-terminus is depicted in grey. (A, B, C) In silico modeling of

docking showed binding of mAb 1340 heavy (blue) and light (red)

variable domain to different TSRs of a properdin monomer (PDB

1W0S, A chain). The different CDRs based on identical sequences

of Table 1 are shown. The large picture shows the interaction of

properdin and mAb 1340. The inlay enlarges the binding regions

between CDRs and TSR. (A) Prediction algorithm of PatchDock

showed an interaction of the CDRs H1, H2, L1 and L2 with TSR

1. (B) Binding of CDR H3, L1, L2 to TSR 3 and H2 to CDR 4

were described by the HexServer algorithm. (C) A third algorithm

docked CDR H2, L1 and L3 to TSR 4. Docking was performed

with GRAMM-X server. (D) A proposed model for a native

properdin multimer is shown [16]. Two properdin monomers

form a loop of four TSRs at each connecting point, respectively. In

this model mAb 1340 (grey circle) interacts with the connecting

points, based on the three in silico docking algorithms.

(TIF)

Figure S2 Determination of properdin thrombospondin
like repeat specificity of mAb 1340 shows only binding to
full length properdin. (A) Human properdin and TSR subunits

conjugated to maltose binding protein (MBP, 500 ng) were

separated on a 15% SDS-Gel and transferred on a PVDF

membrane. Protein detection was performed with mAb 1340. A

positive binding was reportable for full length human properdin

but not for the different TSR subunits. (B) A competitive ELISA

for mAb 1340 binding to human properdin or TSR was

performed. Different concentrations of mAb 1340 (0.06–

0.012 mg/mL, bars) were preincubated with different antigens in

solution (100 mg/mL, depicted on the x-axis). Antibody/antigen

mixtures were added to an ELISA plate, which was coated with

human properdin. MAb 1340 binding to immobilized properdin

was detected. Soluble human properdin inhibited the binding of

mAb 1340 to immobilized properdin. None of the TSRs did

inhibit the binding of different concentrations of mAb 1340 to

immobilized properdin. Shown is an example of two independent

experiments with similar results.

(TIF)

Figure 7. Systemic properdin concentrations in patient serum compared to healthy controls. Serum samples of healthy blood donors
(controls, n = 26), patients with age-related macular degeneration (AMD, n = 20), systemic lupus erythematosus (SLE, n = 6), connective tissue diseases
(CTD, n = 10), polymyalgia rheumatica (PR, n = 31), rheumatoid arthritis (RA, n = 38), spondyloarthritis (SPA, n = 40) and systemic sclerosis (SSc, n = 16)
were diluted in PBS (1:700). Properdin amount in serum samples was compared to a positive control (PC, NHS pool 1:700, ratio on y-axis) using the
described ELISA for human properdin (see Figure 6). Patient and control groups showed a properdin amount in serum between 66–155% of the
positive control. This corresponded to 13–30 mg/mL properdin. There was no significant difference in properdin concentration between the cohorts
(two-tailed, paired t-test, P.0.001).
doi:10.1371/journal.pone.0096371.g007
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Figure S3 MAb 1340 inhibits properdin and factor B
binding to C3b. The complement blocking activity of mAb 1340

(blue), mAb A233 (purple), mAb A235 (green) and mAb anti-

BoNT (orange) were tested on C3b coated plates. MAbs were

serially diluted (0.01–10 mg/mL) in (A) 10% or (B) 20% NHS/

MgEGTA buffer and incubated on a blocked C3b plate. (A)

Properdin deposition was detected with goat anti-properdin pAb

and (B) complement factor B (CFB) deposition was analyzed with

goat anti-CFB pAb. Signal was determined using a peroxidase

conjugated anti-goat antibody, TMB and measurement at

450 nm. All data were normalized to the NHS measurements

without mAb (set to 100%). Shown are means ((A) n = 66s.e.m.,

(B) n = 36s.e.m.) out of three independent experiments. MAb

1340 and mAb A233 blocked properdin and CFB deposition on

immobilized C3b. MAb A235 inhibited not properdin deposition

but CFB detection on C3b coated plates. The unspecific isotype

control did inhibit the complement activity.

(TIF)

Checklist S1 The ARRIVE Guidelines Checklist.

(DOCX)

Material and Methods S1 Competetive ELISA, Inhibition
of complement deposition, Software.

(DOCX)
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56. Karsten CM, Köhl J (2012) The immunoglobulin, IgG Fc receptor and

complement triangle in autoimmune diseases. Immunobiology 217: 1067–1079.
Available: http://www.ncbi.nlm.nih.gov/pubmed/22964232. Accessed 2013

Nov 27.

57. Hoffmann LG, Pitts a K, Densen P, Weiler JM, Butler JE, et al. (1987) A

sandwich ELISA for properdin in clinical specimens. J Immunol Methods 98:

161–172. Available: http://www.ncbi.nlm.nih.gov/pubmed/3571983.

58. Holers VM (2008) The spectrum of complement alternative pathway-mediated

diseases. Immunol Rev 223: 300–316. Available: http://www.ncbi.nlm.nih.gov/
pubmed/18613844.

59. Weber BHF, Issa PC, Pauly D, Herrmann P, Grassmann F, et al. (2014) The

role of the complement system in age-related macular degeneration. Dtsch
Arztebl Int 111: 133–138. doi:10.3238/arztebl.2014.0133.

60. Zuber J, Fakhouri F, Roumenina LT, Loirat C, Frémeaux-Bacchi V (2012) Use
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